Andrew Steyer
R&D S&E, Computer Science

R&D S&E, Computer Science
Biography
Andrew is a mathematician in Org. 1442 (Computational Mathematics). He graduated in 2016 with a PhD in Mathematics from the University of Kansas with a focus on dynamical systems and time-integration. Since 2016 he has worked at Sandia as a postdoc and a staff member on various applied math and computational problems including time-integration of multiphysics problems, machine learning, and computational dynamical systems in various applications including atmospheric modeling, fluid dynamics, plasma physics, robotics, and structure mechanics.
Education
PhD Mathematics (2016), University of Kansas.
MA Mathematics (2013), University of Kansas.
BS Mathematics (2009), University of Minnesota.
Publications
-
Steyer, A. (2022). Computational Response Theory for Dynamics. https://doi.org/10.2172/1898244 Publication ID: 80180
-
Goldberg, N., Demsky, S., Youssef, A., Carter, S., Fowler, D., Jackson, N., Kuether, R., Steyer, A., & Steyer, A. (2021). Experimental and Computational Investigation of Nonlinear Dynamics of a Simplified Bearing-and-Shaft Assembly [Conference Paper]. https://www.osti.gov/biblio/1892458 Publication ID: 76283
-
Steyer, A., Kuether, R., & Kuether, R. (2021). Connecting Functions of Nonlinear Ordinary Differential Equations [Conference Presenation]. https://doi.org/10.2172/1870270 Publication ID: 78596
-
Guba, O., Taylor, M., Bradley, A., Bosler, P., Steyer, A., & Steyer, A. (2021). A framework to evaluate IMEX schemes for atmospheric models [Conference Presenation]. https://doi.org/10.2172/1869551 Publication ID: 78539
-
Steyer, A., Krause, C., & Krause, C. (2021). IMEX vs ETD integrators in a nonhydrostatic atmosphere model [Conference Presenation]. https://doi.org/10.2172/1853866 Publication ID: 77399
-
Krause, C., Steyer, A., & Steyer, A. (2021). Design and Implementation of ETD Methods for Nonhydrostatic Atmosphere Models [Conference Presenation]. https://doi.org/10.2172/1847574 Publication ID: 77373
-
Guba, O., Taylor, M., Bradley, A., Bosler, P., Steyer, A., & Steyer, A. (2020). A framework to evaluate IMEX schemes for atmospheric models. Geoscientific Model Development, 13(12), pp. 6467-6480. https://doi.org/10.5194/gmd-13-6467-2020 Publication ID: 73599
-
Steyer, A. (2020). Connecting functions for efficient computation of nonlinear dynamics [Conference Presenation]. https://doi.org/10.2172/1884464 Publication ID: 72284
-
Kuether, R., Steyer, A., & Steyer, A. (2020). Multi-Harmonic Balance with Preconditioned Iterative Solver [Conference Presenation]. https://www.osti.gov/biblio/1882352 Publication ID: 72285
-
Kuether, R., Steyer, A., & Steyer, A. (2020). Multi-Harmonic Balance with Preconditioned Iterative Solver [Conference Presenation]. https://doi.org/10.2172/1837619 Publication ID: 72360
-
Hillman, B., Caldwell, P., Salinger, A., Bertagna, L., Beydoun, H., Peter, B., Bradley, A., Donahue, A., Eldred, C., Foucar, J., Golaz, C., Guba, O., Jacob, R., Johnson, J., Keen, N., Krishna, J., Lin, W., Liu, W., Pressel, K., … Yuan, X. (2020). SCREAM: a performance-portable global cloud-resolving model based on the Energy Exascale Earth System Model [Conference Poster]. https://www.osti.gov/biblio/1807360 Publication ID: 73705
-
Taylor, M., Guba, O., Steyer, A., Ullrich, P.A., Hall, D.M., Eldred, C., & Eldred, C. (2020). An Energy Consistent Discretization of the Nonhydrostatic Equations in Primitive Variables. Journal of Advances in Modeling Earth Systems, 12(1). https://doi.org/10.1029/2019MS001783 Publication ID: 73562
-
Steyer, A. (2019). IMEX and ETD Methods for NonHydrostatic Atmosphere [Presentation]. https://www.osti.gov/biblio/1646303 Publication ID: 66386
-
Steyer, A., Krause, C., & Krause, C. (2019). Exponential Integrators for the HOMME-NH Nonhydrostatic Dycore [Presentation]. https://www.osti.gov/biblio/1721477 Publication ID: 66413
-
Steyer, A. (2019). Time-Stepping the in E3SM nonhydrostatic atmsophere dynamic core [Presentation]. https://www.osti.gov/biblio/1646141 Publication ID: 65982
-
Steyer, A. (2019). A Family of Second and Third Order Implicit-explicit Runge-Kutta Methods for Stiff Time-dependent Partial Differential Equations [Conference Poster]. https://www.osti.gov/biblio/1601928 Publication ID: 67064
-
Steyer, A. (2018). Progress on the HOMME-NH nonhydrostatic atmosphere dycore [Presentation]. https://www.osti.gov/biblio/1573577 Publication ID: 59998
-
Steyer, A., Van Vleck, E.S., & Van Vleck, E.S. (2018). A Lyapunov and Sacker–Sell spectral stability theory for one-step methods. BIT Numerical Mathematics, 58(3), pp. 749-781. https://doi.org/10.1007/s10543-018-0704-2 Publication ID: 61602
-
Steyer, A., Van Vleck, E.S., & Van Vleck, E.S. (2018). Underlying one-step methods and nonautonomous stability of general linear methods. Discrete and Continuous Dynamical Systems – Series B, 23(7), pp. 2859-2877. https://doi.org/10.3934/dcdsb.2018108 Publication ID: 61629
-
Steyer, A., Taylor, M., Guba, O., & Guba, O. (2018). Implicit-Explicit Time-Integration in the E3SM-Homme Nonhydrostatic Atmosphere Model [Conference Poster]. https://www.osti.gov/biblio/1562350 Publication ID: 58827
-
Steyer, A. (2017). A nonhydrostatic model for atmospheric motion in ACME-HOMME [Conference Poster]. https://www.osti.gov/biblio/1470836 Publication ID: 58376
-
Steyer, A., Van Vleck, E., & Van Vleck, E. (2017). What stability spectra do general linear methods approximate?. https://www.osti.gov/biblio/1429773 Publication ID: 56193
-
Steyer, A. (2017). A nonautonomous spectral stability theory for ordinary differential initial value problem solvers [Conference Poster]. https://www.osti.gov/biblio/1457973 Publication ID: 56317
Showing 10 of 23 publications.